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NMT was introduced by Bahdanau et al. (2014) to avoid keeping a fixed source side jointly trained to maximize the probability of a correct
representation. translation given a source sentence (Bah-danau et al.,
2014). After the initial proposal by (Sutskever et al.,

As compared to separately tuned components in SMT, newly emerging Neural Machine
2014; Bahdanau et al,, 2014), much work has been

translation radically departures from previous machine learn-ing approaches as the training
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decoder then outputs a translation from the encoded vector, where in most of the Bahdanau HA (2014) BE3IAT

cases the encoder and decoder are mainly implemented as RNNs, CNNs or self-
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quential RNNs are used both for encoding source sentences and generating target
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translation.
We draw our inspiration for machine transla-tion with attention from Bahdanau et al. (2014), A R °
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Abstract

In recent years, the success achieved through neural machine translation has made it
mainstream in machine translation systems. In this work, encoder-decoder with attention
system based on “Neural Machine Translation by Jointly Learning to Align and Translate” by
Bahdanau et al. (2014) has been used to accomplish the Machine Translation between English
and Spanish Language which has not seen much research work done as compared to other
languages such as German and French. We aim to demonstrate the re-sults similar to the
breakthrough paper on which our work is based on. We achieved a BLEU score of 25.37, which
was close enough to what Bahdanau et al. (2014) achieved in their work.

1Introduction

Machine Translation (MT) is the task of translat-ing text without human assistance while
preserv-ing the meaning of input text. The early approach to machine translation relied
heavily on hand-crafted transtation rules and linguistic knowledge. Started in early around
1950s, unlike rule-based machine translation, Statistical machine transla-tion (SMT)
generated translations based on statis-tical models whose parameters are derived from the
analysis of bilingual text corpora (Koehn et al., 2008). Though reliable, for SMT, it can be hard
to find content for obscure languages and is less suitable for language pairs with big
differences in word order making the quality of translation far from satisfactory. With the
progress in deep learning being applied to MT, in 2014, end-to-end neural network translation
model was proposed by (Bahdanau et al., 2014; Sutskever et al., 2014) where the term “neural
machine translation” was

formally used. Neural machine translation (NMT) is the newest method of MT that uses a
single large neural network to model the entire transla-tion process, freeing the need for
excessive fea-ture engineering. Through the rapid research and breakthroughs, end-to-end
neural machine trans-lation has gained remarkable performances (Shi et al., 2021; Bahdanau
et al,, 2014) and have be-come mainstream approach to MT.
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